
 1

�
��������	
�	��
�	��	���
����		��
������

�����	�

Yangjun Chen
University of Winnipeg, Canada

Copyright © 2005, Idea Group Inc., distributing in print or electronic forms without written permission of IGI is prohibited.

INTRODUCTION

With the rapid advance of the Internet, management of
structured documents such as XML documents has be-
come more and more important (Marchiori, 1998; Suciu
& Vossen, 2000). As a simplified version of SGML,
XML is recommended by W3C (World Wide Web
Consortium, 1998a) as a document description
metalanguage to exchange and manipulate data and docu-
ments on the WWW. It has been used to code various
types of data in a wide range of application domains,
including a Chemical Markup Language for exchanging
data about molecules, the Open Financial Exchange for
swapping financial data between banks and banks and
customers, as well as a Geographical Markup Language
for searching geographical information (Bosak, 1997;
Zhang & Gruenwald, 2001). Also, a growing number of
legacy systems are adapted to output data in the form of
XML documents.

In recent years, efforts have been made to find an
effective way to generate XML structures that are able
to describe XML semantics in underlying relational
databases (Chen & Huck, 2001; Florescu & Kossmann,
1999; Shanmugasundaram et al., 1999, 2000; Yoshikawa,
Amagasa, Shimura, & Uemura, 2001). However, due to
the substantial difference between the nested element
structures of XML and the flat relational data, much
redundancy is introduced; i.e., the XML data is either
flattened into tuples containing many redundant ele-
ments or has many disconnected elements. Therefore, it
is significant to explore a way to accommodate XML
documents which is different from the relational theory.
In addition, a variety of XML query languages have been
proposed to provide a clue to manipulate XML docu-
ments (Abiteboul, Quass, McHugh, Widom, & Wiener,
1996; Chamberlin et al., 2001; Christophides, Cluet, &
Simeon, 2000; Deutsch, Fernandez, Florescu, Levy, &
Suciu, 1988; Robie, Chamberlin, & Florescu, 2000;
Robie, Lapp, & Schach, 1998). Although the languages
differ according to expressiveness, underlying formal-
ism, and data model, they share a common feature: path-
oriented queries. Thus, finding efficient methods to do
path matching is very important to evaluation of queries
against huge volumes of XML documents.

BACKGROUND

As a path-oriented language, XQL queries are repre-
sented by a line command which connects element types
using path operators (‘/’ or ‘//’). ‘/’ is the child operator
which selects from immediate child nodes. ‘//’ is the
descendant operator which selects from arbitrary de-
scendant nodes. In addition, symbol ‘@’ precedes at-
tribute names. By using these notations, all paths of tree
representation can be expressed by element types, at-
tributes, ‘/’ and ‘@’. Exactly, a simple path can be
described by the following Backus-Naur Form:

<simple path> ::= <PathOP> <SimplePathUnit> |
<PathOp><SimplePathUnit>‘@’<AttName>

<PathOp> ::= ‘/’ | ‘//’
<SimplePathUnit>::=<ElementType> |

<ElementType><PathOp><SimplePathUnit>

The following is a simple path-oriented query:

/letter//body [para $contains$‘visit’] (1)

where /letter//body is a path and [para $contains$ ‘visit’]
is a predicate, enquiring whether element “para” con-
tains a word “visit.”

Several paths can be jointed together using ∧ to form
a complex query as follows:

/hotel-room-reservation/name ?x ∧ (2)

/hotel-room-reservation/location [city-or-district
= Winnipeg] ∧

/hotel-room-reservation/location/address [street =
510 Portage Ave]

EVALUATION OF PATH-ORIENTED
QUERIES

In this section, we show different ways to evaluate a
path-oriented query. First, we discuss the basic methods
used in a database environment. Then a new strategy for

2

Path-Oriented Queries and Tree Inclusion Problem

tree-inclusion , which can be embedded into a document
database to provide an efficient way to evaluate path-
oriented queries, is discussed in great detail.

QUERY EVALUATION BASED
ON INVERSION

Inversion on Elements and Words

There is a lot of work that considers using relational
database techniques to store and retrieve XML docu-
ments, such as Arnold-Moore, Fuller, Lowe, Thom, and
Wilkinson (1995); Florescu and Kossman (1999); and
Zhang, Naughton, DeWitt, Luo, and Lohman (2001).
Among them, the most representative is the method
discussed in Zhang et al. In this method, two kinds of
inverted indexes are established for text words and ele-
ments, by means of which a text word (or an element) is
mapped to a list, which enumerates documents containing
the word (or the element) and its position within each
document. To speed up the query evaluation, the position
of a word (or an element) is recorded as follows:

• (Dno, Wposition, level) for a text word,
• (Dno, Eposition, level) for an element,

where Dno is its document number, Wposition is its
position in the document, and level is its nesting depth
within the document; Eposition is a pair: <s, e>, repre-
senting the positions of the start and end tags of an
element, respectively. For instance, the document shown
in Figure 1(a) is indexed as shown in Figure 1(b). The

index for elements is called E-index and the index for
words is called T-index.

Let (d, x, l) be an index entry for an element a. Let
(d’, x’, l’) be an index entry for a word b. Then, a contains
b iff d = d’ and x.s < x’ < x.e. Let (d”, x”, l”) be an index
entry for another element c. Then, a contains c iff d = d’
and x.s < x”.s and x.e > x”.e. Using these properties,
some simple path-oriented queries can be evaluated.
For example, to process the query: /hotel-room-reser-
vation/location/[city-or-district = Winnipeg], the in-
verted lists of hotel-room-reservation, location, city-
or-district, and Winnipeg will be retrieved and then their
containment will be checked according to the above
properties. In a relational database, E-index and T-index
are mapped into the following two relations (note that
primary keys are italicized):

E-index (element, docno, begin, end, level)
T-index (word, docno, wordPosition, level)

These index structures are efficient for simple cases,
such as whether a word is contained in an element.
However, in the case that a query is a nontrivial tree, the
evaluation based on these index structures is an expo-
nential time process. To see this, consider the query: /
hotel-room-reservation/location/address [street = Por-
tage Ave.]. To evaluate this query, four joins have to be
performed. They are the self-joins on E-index relation
to connect hotel-room-reservation and location, loca-
tion and address, and address and street, as well as the
join between E-index and T-index relations to connect
street and Portage Ave. In general, for a document tree
with n nodes and a query tree with m nodes, the checking
of containment needs O(nm) time using this method.

Figure 1. A sample XML file and its inverted lists

<hotel-room-reservation filecode=‘‘1302’’>
 <name>Travel-lodge</name>
 <location>
 <city-or-district>Winnipeg</city-or-district>
 <state>Manitoba</state>
 <country>Canada</country>
 <address>
 <number>510</number>
 <street>Portage Ave.</street>
 <post-code>R3B 2E9</post-code>
 </address>
 </location>
 <type>
 <room>one-bed-room</room>
 <price>$119.00</price>
 </type>
 <reservation-time>
 <from>April 28, 2003</from>
 <to>May 01, 2003</to>
</hotel-room-reservation>

T-index:

E-index:

(a) (b)

hotel-room-reservation
name
location
... ...

(1, <1, 45>, 0) ...
(1, <2, 4>, 1) ...
(1, <5, 28>, 2) ...
... ...

Travel-lodge
Winnipeg
Manitoba
... ...

(1, 3, 2) ...
(1, 7, 3) ...
(1, 10, 3) ...
... ...

 3

Path-Oriented Queries and Tree Inclusion Problem

�
Inversion on Paths and Words

The above method is improved by Seo, Lee, and Kim
(2003) by introducing indexes on paths to reduce the
number of joins as well as the sizes of relations involved
in a join operation. This is achieved by establishing four
relations to accommodate the inverted lists:

Path(path, pathID)
PathIndex(pathID, docno, begin, end)
Word(word, wordID)
WordIndex(wordID, docno, pathID, position)

In this way, the number of joins is dramatically de-
creased. For example, to process the same query: /hotel-
room-reservation/location/address [street = Portage
Ave.], only two joins are needed. The first join is between
the Path and WordIndex relations with the join condi-
tion:

Path.path = ‘/hotel-room-reservation/location/ad
dress/street’ ∧
Path.pathID = WordIndex.pathID

The second join is between the result R of the first
join and the Word relation with the join condition:

R.wordID = Word.wordID ∧
Word. Word = ‘Portage Ave.’

In general, the query evaluation based on such an
index structure needs l joins, where l is the number of the
words appearing in a query. However, such a time im-
provement is at the cost of memory space since in Path
relation the element names are repeatedly stored. Con-
cretely, for a document with n nodes, the size of the Path
relation is on the order of O(n2). Therefore, the time
complexity of this method is O(l⋅d⋅n2), where d repre-
sents the average length of paths.

Query Evaluation Based on
Tree Inclusion

As pointed out by Mannila and Raiha (1990), the evalu-
ation of path-oriented queries is in essence a tree inclu-
sion problem. For instance, to evaluate query (2), we will
check whether there exists a document that contains the
tree representing the query (see Figure 2 for illustra-
tion).

In the following, we first give a formal definition of
tree inclusion. Then, a new algorithm for checking tree
inclusion will be discussed.

Definition 1 (tree inclusion): Let P and T be rooted
labeled trees. Let V(P) (V(T)) be the set of the nodes in
P (T). We define an ordered embedding (f, P, T) as an
injective function f: V(P) → V(T) such that for all nodes
v, u ∈ V(P),

1. label(v) = label(f(v)); (label preservation condi-
tion)

2. v is an ancestor of u iff f(v) is an ancestor of f(u);
(ancestor condition)

3. v is to the left of u iff f(v) is to the left of f(u);
(sibling condition)

For example, the tree representing the query (2) is
included in the tree representing the document shown
in Figure 1(a) (see Figure 2).

A lot of algorithms have been developed to check
tree inclusion, such as Alonso and Schott (1993); Chen
(1998); Kilpelainen and Mannila (1995); and Richter
(1997). All these methods focus on the bottom-up
strategies to get optimal computational complexities,
but they are not suitable for database environment since
the algorithms proposed assume that both the target
tree (or, say, the document tree) and the pattern tree
(or, say, the query tree) can be accommodated com-
pletely in the main memory. In the case of a large
volume of data, it is not possible. Here we present a new
algorithm by integrating a top-down process into a
bottom-up computation, which has the same time
complexity as the best bottom-up algorithm but needs
no extra space. More importantly, it is more suitable
for a database environment since by the top-down pro-
cess each time only part of the tree is manipulated.
Furthermore, it can be combined with word signatures
to speed up query evaluation (Chen, 2003).

Mixed Strategy for Tree
Inclusion Problems

Now, we present our algorithm, which is designed
based on the following three observations:

Figure 2. Illustration for tree inclusion

Figure 2. Illustration for tree inclusion

street

hotel-room-reservation

name location type reservation

city-or
-street

state country

address

room price

from to

hotel-room-reservation

name
location

?x city-or
-street

address

Winnipeg
street

515 Portage Ave.

number postcode

4

Path-Oriented Queries and Tree Inclusion Problem

1. Let r
1
 and r

2
 be the roots of T and P, respectively.

If T includes P and label(r
1
) = label(r

2
), we must

have a root preserving embedding.
2. Let T

1
, ..., and T

k
 be the subtrees of r

1
. Let P

1
, ..., and

P
l
 be the subtrees of r

2
. If T includes P and label(r

1
)

= label(r
2
), there must exist k

1
, ..., k

j
 and l

1
, ..., l

j
 (j

≤ l) such that
ikT includes < 1

1
+−i

lP , ...,
i

lP > (i = 1, ...,

j; l
0
= 0), where < 1

1
+−i

lP , ...,
i

lP > represents a forest

containing subtrees 1
1
+−i

lP , ..., and
i

lP .
3. If T includes S, but label(r

1
) ¹ label(r

2
), there must

exist an i such that T
i
 contains the whole S.

We notice that observation (1) and (3) hint a top-
down process to find any possible root-preserving
subtree embeddings while observation (2) hints a bot-
tom-up process to find the left embedding for subforest
inclusion. During the top-down process, the bottom-up
process will be invoked to find the left embedding of
<P

1
, ..., P

l
> in <T

1
, ..., T

k
>; and during the bottom-up

process, the top-down process may be invoked to find
any possible root-preserving subtree embedding. (See
Kilpelainen & Mannila, 1995, for the definitions of the
root-preserving embedding and left emdedding.)

In a forest <T
1
, ..., T

k
>, the trees T

1
, ..., T

i-1
 are called

the sibling trees of T
i
.

Let P
11

, ..., and P
1q

 be the subtrees of P
1
’s root. The

top-down process is designed as a function tree-
inclusion(T, P, a), where 0 ≤ a ≤l. If a > 0, it indicates
that the left sibling trees of T cover P

1
, ..., and P

a
. If T

does not have any left sibling trees or the left sibling
trees of T don’t cover any of P

1
, ..., and P

l
, a is set to 0.

The output of tree-inclusion(T, P, a) is a pair of the form
(num, transnum), where num ∈ {0, 1} and a ≤ transnum
≤ q. If num = 1, it shows that T includes P. In this case,
the value of transnum is not important and will be
ignored. If num = 0, it shows that T does not include P
but T covers P

a
, ..., and P

transnum
; and thus T, together with

its left sibling trees, covers P
1
, ..., and P

transnum
.

The bottom-up process is designed as a function
forest-inclusion(T, G, a), where G = <P

1
, ..., P

s
> is a

forest and 0 ≤ a ≤ q. If a > 0, it indicates that the left
sibling trees of T cover P

11
, ..., and P

1a
. If T does not have

any left sibling trees or the left sibling trees of T don’t
cover any of P

11
, ..., and P

1q
, a is equal to 0. The output

of forest-inclusion(T, G, a) is a triplet of the form
(num, subnum, transnum), where 0 ≤ num ≤s, 0 ≤
subnum ≤q, and a ≤transnum ≤q. If num > 0, subnum
and transnum are not important and can be ignored. If
num = 0, subnum indicates that T covers P

11
, ..., and

P
1subnum

 if subnum > 0; and transnum indicates that T,
together with all its left sibling trees, covers P

11
, ..., and

Function tree-inclusion(T, P, a) (*top-down process*)

Input: T - a tree, S - a tree, a - an integer (at the very beginning, a is 0)

Output: (num, transnum) - a pair of integers

begin

1. let r1 and r2 be the roots of T and P, respectively;
2. let T1, ..., Tk be the subtrees of r1;
3. let P1, ..., Ps be the subtrees of r2;
4. if label(r1) = label(r2) then
5. {temp := <P1, ..., Ps>; i := 1; j := 0; b := 0;
6. while (i ≤ k ∧ temp ≠ φ) do
7. { x := forest-inclusion(Ti, temp, b);
8. if x.num > 0 then {temp := temp/<Pj+1, ..., Pj+x.num>; j := j + x.num; b := 0;}
9. else if (x.subnum = number of the subtrees of Pj+1’s root and label(Ti’s root) = label(Pj+1’s
root))
10. then {temp := temp/<Pj+1>; j := j + 1; b := 0;}
11. else b := x.transnum;
12. i := i + 1; }
13. if temp = φ then return (1, 0);
14. else { if j = 0 then
15. {if (b = number of the subtrees of P1’s root and label(T’s root) = label(P1’s
root)) then j := 1;}
16. if a = 0 then return (0, j);
17. else {x := forest-inclusion(T, <Pa+1, ..., Ps >, 0); return (0, max{j, a + x.num});}}
18. }
19. else {b := 0;
20. for i = 1 to k do
21. { y := forest-inclusion(Ti, P, b); b := y.transnum;
22. if y.num = 1 return (1, 0);}
23. if a = 0 then return (0, b);
24. else {x := forest-inclusion(T, <Pa+1, ..., Ps>, 0); return (0, max{b, a + x.num)}}}
25. }
end

 5

Path-Oriented Queries and Tree Inclusion Problem

�

P
1transnum

. We notice that the meaning of subnum and
transnum are quite different. In the case that num = 0,
subnum can be used to check whether T includes P

1
 by

comparing T’s root and P
1
’s root as well as subnum and

the number of P
1
’s children. If T’s root and P

1
’s root have

the same label and subnum and the number of P
1
’s

children are equal, we have T including P
1
. In this way, a

repeated checking of T against P
1
can be avoided. On the

other hand, transnum is used to avoid the checking of
the tree rooted at T’s parent against P

1
 if it exists. Let v

be the parent of T. Let S be the subtree rooted at v and S
1
,

..., S
k
 be the subtrees of v with T = S

i
for some i. Assume

that P
1
 is not included by any of S

1
, ..., S

k
. Then, the return

value of each g(S
i
, G, a

i
) (i = 1, ..., k) is of the form (0,

subnum
i
, transnum

i
) and transnum

k
 records the number

of the subtrees in <P
11

, ..., and P
1q

>, which are covered
by S

1
, ..., S

k
. Thus, if label(v) = label(r

1
) and transnum

k

= q, we know that S includes P
1
.

First, we give the formal description of the top-down
process.

The above algorithm is made up of two parts. The
first part contains lines 1-18. The second part contains
lines 19-25. In the first part, we handle the case that
label(r

1
) = label(r

2
). In this case, we will perform a

series of forest-inclusion(T
i
, G

i
, a

i
) (i = 1, ..., g for some

g ≤ k), where G
i
 = <

il
P , ..., P

s
> with l

1
= 1 ≤ l

2
 ≤ ... ≤ l

g
 ≤

s and a
1

= 0 ≤ a
2
 ≤ ... ≤ a

g
 ≤ q (q is the number of the

children of P
1
’s root.) The return value of each forest-

inclusion(T
i
, G

i
, a

i
), is a triplet (num, subnum,

transnum), according to which G
i+1

and a
i+1

 are deter-
mined for a next call - forest-inclusion(T

i+1
, G

i+1
, a

i+1
) as

follows:

(1) If num > 0, then G
i+1

 = < numl
i

P + , ..., P
s
>, l

i+1
 = l

i
+

num, and a
i+1

 = 0. (See line 8.)
(2) If num = 0, subnum = the number of the children

of
i

lP ’s root and label(T
i
’s root) = label(

i
lP ’s root),

then G
i+1

 = < 1+
i

lP , ..., P
s
>, l

i+1
 = l

i
+ 1, and a

i+1
 = 0.

(See lines 9-10.)
(3) If num = 0, and subnum ¹ the number the children

of
i

lP ’s root or label(T
i
’s root) ¹ label(’s root),

then G
i+1

 = G
i
, l

i+1
 = l

i
, and a

i+1
 = transnum. (See

line 11.)

When all T
i
’s are checked, we will determine the

return value of tree-inclusion(T, P, a). We distinguish
between two cases:

(1) Let j be the number of subtrees in G, which are
covered by <T

1
, ..., T

k
>. If j = s, return (num,

transnum) = (1, 0), indicating that T includes P. In
this case, transnum is not important and is simply
set to 0. (See line 13.)

(2) If j < s, the return value is (0, transnum), where
transnum is determined as follows:

Function forest-inclusion(S, G, b) (*bottom-up process*)
Input: S - a tree, G - a forest, b - an integer
Output: (num, subnum, transnum) - a triple of integers
begin

1. let r1 be the root of S; let S1, ..., Sk be the subtrees of r1;
2. let G = <P1, ..., Ps>;
3. find l such that |<P1, ..., Pl>| ≤ |S| < |<P1, ..., Pl+1>|
4. if l = 1 and height(Ti) ≥ height(P1) then {x := tree-inclusion(T, P1, b); return (x.num, 0,
x.transnum);}
5. if (l = 1 and height(Ti) < height(P1)) or (l = 0) then
6. { let P11, ..., P1q be the subtrees of P1’s root;
7. x : = forest-inclusion(S, <P1,b+1, ..., P1q >, 0);
8. return (0, 0, b + x.num);}
9. if l > 1 then
10. { temp := <P1, ..., Pl>; i := 1; j := 0; c := 0;
11. while (i ≤ k ∧ temp ≠ φ) do
12. { x := forest-inclusion(Si, temp, c);
13. if x.num > 0 then {temp := temp/<Pj+1, ..., Pj+x.num>; j := j + x.num; c := 0;}
14. else if (x.subnum = number of the subtrees of Pj+1’s root and label(Ti’s root) = label(Pj+1’s root))
15. then {temp := temp/<Pj+1>; j := j + 1; c := 0;}
16. else c := x.trannum;
17. i := i + 1; }
18. if (j > 0) then return (j, 0, 0)
19. else { if b = 0 then return (0, c, c);
20. else {x := forest-inclusion(S, <Pj+1,b+1, ..., Pj+1,l >, 0); return (0, c, max{c, b + x.num)}}}
end

6

Path-Oriented Queries and Tree Inclusion Problem

(a) If j = 0, we will check whether b = number of the
subtrees of P

1
’s root and label(T’s root) =

label(P
1
’s root). If it is the case, set j to 1;

otherwise, j remains 0. (See line 15.)
(b) If j > 0, we will check whether a = 0. If it is the

case, return (0, j). Otherwise, we will call for-
est-inclusion(T, <P

a+1
, ..., P

s
>, 0). Assume that

the return value is (num’, subnum’, transnum’).
Then, the value of transnum is set to max{j, a +
num’}.

The second part handles the case that label(r
1
) ¹

label(r
2
). In this case, we will check each T

i
 (i = 1, ..., k)

in turn to find any T
i
 which includes the whole P.

From the above analysis, we can see that if each time
forest-inclusion(T

i
, G

i
, a

i
) returns a correct value, the

result returned by tree-inclusion(T, P, a) must be cor-
rect. Now we discuss forest-inclusion(T

i
, G

i
, a

i
) in

detail. The following is its main idea:

(1) Let G
i
 = <P

1
, ..., P

s
>. Find a j such that |T

i
| ≥ |<P

1
, ...,

P
j
>| but |T

i
| < |<P

1
, ..., P

j+1
>|.

(2) If j > 1, we try to find an embedding of <P
1
, ..., P

j
>

in the subtrees of T
i
’s root. Let be T

i1
, ..., and T

iz
be

the subtrees of T
i
’s root. Perform a series of

forest-inclusion(T
i
, G

ik
, b

k
) (k = 1, ..., c for some c

≤ z), where G
ik
 = <

kl
P , ..., P

s
>, with l

1
= 1 ≤ l

2
 ≤... ≤

l
c
 ≤ j and a

1
= 0 ≤a

2
 ≤ ... ≤ a

g
 ≤ q (q is the number of

the children of P
1
’s root).

(3) If j = 1, i.e., |T
i
| ≥ |P

1
| but |T

i
| < |<P

1
, P

2
>|, and

height(T
i
) ≥ height(P

1
), call tree-inclusion(T

i
, P

1
,

a). Assume that its return value is (num, transnum).
Then, the return value of forest-inclusion(T

i
, G

i
,

a
i
) is set to be (num, 0, transnum).

(4) If j = 1 but height(T
i
) < height(P

1
), or j = 0, i.e., |T

i
|

< |P
1
|, call forest-inclusion(T

i
, <P

1,a+1
, ..., P

1
q >,

0). Assume that its return value is (num, subnum,
transnum). Then, the return value of forest-
inclusion(T

i
, G

i
, a

i
) is set to be (0, 0, transnum).

From (2) and (4) shown above, we can see that this
process is in essence a bottom-up process. However, it
is not a pure bottom-up computation since if the condi-
tion in (3) is satisfied, a top-down process will be
invoked.

Above is the formal description of the algorithm.

FUTURE TREND

Document databases can be considered as well-organised
information resources, which can be distributed over

the Internet and become accessible to end users through
the network. For this purpose, remote query evaluation
has to be supported to replace the simple navigation
along hyperlinks with the navigation through submitting
specific queries. In this way, the search of information
will be more efficient and more effective. However, the
evaluation of remote queries is obviously more chal-
lenging than that of local ones, and much research on
this is by all means required. Therefore, this must be one
of the most important tasks in the near future.

CONCLUSION

In this paper, different methods for evaluating path-
oriented queries are discussed. They are the inversion
on elements and words (IEW), the inversion on paths and
words (IPW), and the method based on a new tree-
inclusion algorithm. In general, the IPW method has a
better time complexity than the IEW, but it needs more
memory space. In contrast, the tree inclusion needs no
extra space but shows a better time complexity than both
the IPW and the IEW. Especially, the signature tech-
nique can be integrated into the new tree-inclusion
algorithm to cut off nonrelevant documents or
nonrelevant elements as early as possible and improve
the efficiency significantly.

REFERENCES

Abiteboul, S., Quass, D., McHugh, J., Widom, J., &
Wiener, J. (1996). The Lorel query language for
semistructured data. International Journal on Digital
Libraries, 1(1).

Alonso, L., & Schott, R. (1993). On the tree inclusion
problem. In Proceedings of Mathematical Founda-
tions of Computer Science (pp. 211-221).

Arnold-Moore, T., Fuller, M., Lowe, B., Thom, J., &
Wilkinson, R. (1995). The ELF data model and SGQL
query language for structured document databases. In
Proceedings of the Australasian Database Confer-
ence (pp. 17-26).

Bosak, J. (1997, March). XML, Java, and the future of
the Web. Retrieved from http://sunsite.unc.edu/pub/
sun-info/standards/xml/why/xmlapps.html

Chamberlin, D., Clark, J., Florescu, D., Robie, J., Simeon,
J., & Stefanescu, M. (2001). Xquery 1.0: An XML query
language (Tech. Rep., W3C Working Draft 07). World
Wide Web Consortium.

 7

Path-Oriented Queries and Tree Inclusion Problem

�
Chen, M. (1998). More efficient algorithm for ordered
tree inclusion. Journal of Algorithms, 26, 370-385.

Chen, Y. (2003) Query evaluation and Web recognition
in document databases. In Proceedings of IASTED In-
ternational Conference on Internet and Multimedia
Systems and Application, IMSA 2003.

Chen, Y., & Huck, G. (2001). On the evaluation of path-
oriented queries in document databases. In Lecture
notes in computer science: Vol. 2113 (pp. 953-962).

Christodoulakis, S., & Faloutsos, C. (1984). Design
consideration for a message file server. IEEE Transac-
tions on Software Engineering, 10(2), 201-210.

Christophides, V., Cluet, S., & Simeon, J. (2000). On
wrapping query languages and efficient XML integra-
tion. In Proceedings of the ACM SIGMOD Conference
on Management of Data (pp. 141-152).

Deutsch, A., Fernandez, M. F., Florescu, M. D., Levy, A.,
& Suciu, D. (1988, August). XML-QL: A query lan-
guage for XML. Retrieved from http://www.w3.org/
TR/NOTE-xml-ql/

Faloutsos, C. (1985). Access methods for text. ACM
Computing Surveys, 17(1), 49-74.

Faloutsos, C. (1992). Signature files. In W. B. Frakes &
R. Baeza-Yates (Eds.), Information retrieval: Data
structures & algorithms (pp. 44-65). NJ: Prentice
Hall.

Florescu, D., & Kossman, D. (1999). Storing and query-
ing XML data using an RDBMS. IEEE Data Engineer-
ing Bulletin, 22(3).

Kilpelainen, P., & Mannila, H. (1995). Ordered and
unordered tree inclusion. SIAM Journal of Computing,
24, 340-356.

Knuth, D. E. (1973). The art of computer program-
ming: Sorting and searching. London: Addison-
Wesley.

Mannila, H., & Raiha, K.-J. (1990). On query languages
for the p-string data model. In H. Kangassalo, S. Ohsuga,
& H. Jaakola (Eds.), Information modelling and knowl-
edge bases (pp. 469-482). Amsterdam: IOS Press.

Marchiori, M. (1998). QL’98—Query Languages
1998). Retrieved from http://www.w3.org/TandS/QL/
QL98

Pixley, T. (2000). Document Object Model (DOM)
Level 2 Events Specification Version 1.0 (W3C Rec-
ommendation).

Richter, T. (1997). A new algorithm for the ordered tree
inclusion problem. In Lecture Notes of Computer Sci-
ence: Vol. 1264. Proceedings of the eighth annual
Symposium on Combinatorial Pattern Matching, CPM
(pp. 150-166). Springer.

Riordan, J. (1968). Combinatorial identities. NY:
Wiley.

Robie, J., Chamberlin, D., & Florescu, D. (2000). Quilt:
An XML query language for heterogeneous data sources.
In Proceedings of the International Workshop on the
Web and Databases.

Robie, J., Lapp, J., & Schach, D. (1998) XML query
language (XQL). In W3C QL’98—The Query Languages
Workshop.

Seo, C., Lee, S., & Kim, H. (2003). An efficient inverted
index technique for XML documents using RDBMS.
Information and Software Technology, 45, 11-22.

Shanmugasundaram, J., Shekita, R., Carey, M. J., Lind-
say, B. G., Pirahesh, H., & Reinwald, B. (2000). Effi-
ciently publishing relational data as XML documents. In
Proceedings of the International Conference on Very
Large Data Bases, VLDB’00 (pp. 65-76).

Shanmugasundaram, J., Tufte, K., Zhang. C., He, D. J.,
DeWitt, J., & Naughton, J. F. (1999). Relational data-
bases for querying XML documents: Limitations and
opportunities. In Proceedings of The International
Conference on Very Large Data Bases, VLDB’99 (pp.
302-314).

Suciu, D., & Vossen, G. (2000). Lecture notes in com-
puter science: Proceedings of the third International
Workshop on the Web and Databases, WebDB 2000.
Springer-Verlag.

World Wide Web Consortium. (1998a, February). Ex-
tensible Markup Language (XML) 1.0. Retrieved from
http//www.w3.org/TR/ 1998/REC-xml/19980210

World Wide Web Consortium. (1998b, December).
Extensible Style Language (XML) Working Draft. Re-
trieved from http/ /www.w3.org/TR/1998/WD-xsl-
19981216

Yoshikawa, M., Amagasa, T., Shimura, T., & Uemura, S.
(2001). XRel: A path-based approach to storage and
retrieval of XML documents using relational databases.
ACM Transactions on Internet Technology, 1(1).

Zhang, C., Naughton, J., DeWitt, D., Luo, Q., & Lohman,
G. (2001). On supporting containment queries in rela-
tional database management systems. In Proceedings of
ACM SIGMOD 2001.

8

Path-Oriented Queries and Tree Inclusion Problem

Zhang, J., & Gruenwald, L. (2001). A GML-based open
architecture for building a geographical information
search engine over the Internet. In Proceedings of WISE
2001 (pp. 385-392).

KEY TERMS

Containment Query: Queries that are based on the
containment and proximity relationships among ele-
ments, attributes, and their contents.

Document Database: A database designed for man-
aging and manipulating XML documents or even more
generic SGML documents.

Ordered and Labeled Tree: Ordered labeled trees
are trees whose nodes are labeled and in which the left-
to-right order among siblings is significant.

Path-Oriented Query: Queries that are based on
the path expressions including element tags, attributes,
and key words.

Signatures: A signature is a hash-coded bit string
assigned to key words used as indexes to speed up
information retrieval.

Tree Inclusion: Given two ordered labeled trees T
and S, the tree inclusion problem is to determine whether
it is possible to obtain S

from T

by deleting nodes.

Deleting a node v in tree T

means making the children of

v become the children of the parent of v and then
removing v. If S

can be obtained from T

by deleting

nodes, we say that T

includes S.

XML Document: A document consisting of an (op-
tional) XML declaration, followed by either an (op-
tional) DTD or XML schema and then followed by
document elements.

XML Schema: An alternative to DTDs. It is a schema
language that assesses the validity of a well-formed
element and attribute information items within an XML
document. There are two major schema models: W3C
XML Schema and Microsoft Schema.

